3.323 \(\int \frac{\text{sech}(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\)

Optimal. Leaf size=59 \[ \frac{\tan ^{-1}(\sinh (c+d x))}{d (a-b)}-\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sinh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} d (a-b)} \]

[Out]

ArcTan[Sinh[c + d*x]]/((a - b)*d) - (Sqrt[b]*ArcTan[(Sqrt[b]*Sinh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a - b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0667097, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3190, 391, 203, 205} \[ \frac{\tan ^{-1}(\sinh (c+d x))}{d (a-b)}-\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sinh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} d (a-b)} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]/(a + b*Sinh[c + d*x]^2),x]

[Out]

ArcTan[Sinh[c + d*x]]/((a - b)*d) - (Sqrt[b]*ArcTan[(Sqrt[b]*Sinh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a - b)*d)

Rule 3190

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}(c+d x)}{a+b \sinh ^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \left (a+b x^2\right )} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{(a-b) d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sinh (c+d x)\right )}{(a-b) d}\\ &=\frac{\tan ^{-1}(\sinh (c+d x))}{(a-b) d}-\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sinh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a} (a-b) d}\\ \end{align*}

Mathematica [A]  time = 0.126033, size = 54, normalized size = 0.92 \[ \frac{\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{a} \text{csch}(c+d x)}{\sqrt{b}}\right )}{\sqrt{a}}+2 \tan ^{-1}\left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )}{a d-b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]/(a + b*Sinh[c + d*x]^2),x]

[Out]

((Sqrt[b]*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[b]])/Sqrt[a] + 2*ArcTan[Tanh[(c + d*x)/2]])/(a*d - b*d)

________________________________________________________________________________________

Maple [B]  time = 0.058, size = 481, normalized size = 8.2 \begin{align*}{\frac{ab}{d \left ( a-b \right ) }{\it Artanh} \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{-b \left ( a-b \right ) }}}{\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}}+{\frac{b}{d \left ( a-b \right ) }{\it Artanh} \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}}-{\frac{{b}^{2}}{d \left ( a-b \right ) }{\it Artanh} \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{-b \left ( a-b \right ) }}}{\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}}+{\frac{ab}{d \left ( a-b \right ) }\arctan \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{-b \left ( a-b \right ) }}}{\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}}-{\frac{b}{d \left ( a-b \right ) }\arctan \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}}-{\frac{{b}^{2}}{d \left ( a-b \right ) }\arctan \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{-b \left ( a-b \right ) }}}{\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}}+2\,{\frac{\arctan \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) }{d \left ( a-b \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)/(a+b*sinh(d*x+c)^2),x)

[Out]

1/d*b/(a-b)*a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b
))^(1/2)+a-2*b)*a)^(1/2))+1/d*b/(a-b)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(
-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))-1/d*b^2/(a-b)/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a
*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))+1/d*b/(a-b)*a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)
-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/d*b/(a-b)/((2*(-b*(a-b))
^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/d*b^2/(a-b)/(-b*(a
-b))^(1/2)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1
/2))+2/d/(a-b)*arctan(tanh(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{2 \, \arctan \left (e^{\left (d x + c\right )}\right )}{a d - b d} - 2 \, \int \frac{b e^{\left (3 \, d x + 3 \, c\right )} + b e^{\left (d x + c\right )}}{a b - b^{2} +{\left (a b e^{\left (4 \, c\right )} - b^{2} e^{\left (4 \, c\right )}\right )} e^{\left (4 \, d x\right )} + 2 \,{\left (2 \, a^{2} e^{\left (2 \, c\right )} - 3 \, a b e^{\left (2 \, c\right )} + b^{2} e^{\left (2 \, c\right )}\right )} e^{\left (2 \, d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

2*arctan(e^(d*x + c))/(a*d - b*d) - 2*integrate((b*e^(3*d*x + 3*c) + b*e^(d*x + c))/(a*b - b^2 + (a*b*e^(4*c)
- b^2*e^(4*c))*e^(4*d*x) + 2*(2*a^2*e^(2*c) - 3*a*b*e^(2*c) + b^2*e^(2*c))*e^(2*d*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.66076, size = 1341, normalized size = 22.73 \begin{align*} \left [-\frac{\sqrt{-\frac{b}{a}} \log \left (\frac{b \cosh \left (d x + c\right )^{4} + 4 \, b \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + b \sinh \left (d x + c\right )^{4} - 2 \,{\left (2 \, a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, b \cosh \left (d x + c\right )^{2} - 2 \, a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (b \cosh \left (d x + c\right )^{3} -{\left (2 \, a + b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + 4 \,{\left (a \cosh \left (d x + c\right )^{3} + 3 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + a \sinh \left (d x + c\right )^{3} - a \cosh \left (d x + c\right ) +{\left (3 \, a \cosh \left (d x + c\right )^{2} - a\right )} \sinh \left (d x + c\right )\right )} \sqrt{-\frac{b}{a}} + b}{b \cosh \left (d x + c\right )^{4} + 4 \, b \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + b \sinh \left (d x + c\right )^{4} + 2 \,{\left (2 \, a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, b \cosh \left (d x + c\right )^{2} + 2 \, a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (b \cosh \left (d x + c\right )^{3} +{\left (2 \, a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + b}\right ) - 4 \, \arctan \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )}{2 \,{\left (a - b\right )} d}, -\frac{\sqrt{\frac{b}{a}} \arctan \left (\frac{1}{2} \, \sqrt{\frac{b}{a}}{\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )}\right ) + \sqrt{\frac{b}{a}} \arctan \left (\frac{{\left (b \cosh \left (d x + c\right )^{3} + 3 \, b \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + b \sinh \left (d x + c\right )^{3} +{\left (4 \, a - b\right )} \cosh \left (d x + c\right ) +{\left (3 \, b \cosh \left (d x + c\right )^{2} + 4 \, a - b\right )} \sinh \left (d x + c\right )\right )} \sqrt{\frac{b}{a}}}{2 \, b}\right ) - 2 \, \arctan \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )}{{\left (a - b\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(-b/a)*log((b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - 2*(2*a + b)
*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 - (2*a + b)*cosh(d
*x + c))*sinh(d*x + c) + 4*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3 - a*cosh
(d*x + c) + (3*a*cosh(d*x + c)^2 - a)*sinh(d*x + c))*sqrt(-b/a) + b)/(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*si
nh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*x +
 c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)) - 4*arctan(cosh(d*x + c) + sinh(d*
x + c)))/((a - b)*d), -(sqrt(b/a)*arctan(1/2*sqrt(b/a)*(cosh(d*x + c) + sinh(d*x + c))) + sqrt(b/a)*arctan(1/2
*(b*cosh(d*x + c)^3 + 3*b*cosh(d*x + c)*sinh(d*x + c)^2 + b*sinh(d*x + c)^3 + (4*a - b)*cosh(d*x + c) + (3*b*c
osh(d*x + c)^2 + 4*a - b)*sinh(d*x + c))*sqrt(b/a)/b) - 2*arctan(cosh(d*x + c) + sinh(d*x + c)))/((a - b)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}{\left (c + d x \right )}}{a + b \sinh ^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)/(a + b*sinh(c + d*x)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.43074, size = 289, normalized size = 4.9 \begin{align*} -\frac{2 \, \sqrt{a b} d{\left | b \right |} \arctan \left (\frac{2 \, \sqrt{\frac{1}{2}}{\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}}{\sqrt{\frac{4 \, a d + 4 \, b d - \sqrt{-64 \, a b d^{2} + 16 \,{\left (a d + b d\right )}^{2}}}{b d}}}\right )}{{\left (a d - b d\right )}^{2} b -{\left (a b + b^{2}\right )} d{\left | -a d + b d \right |}} - \frac{2 \, b d \arctan \left (\frac{2 \, \sqrt{\frac{1}{2}}{\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}}{\sqrt{\frac{4 \, a d + 4 \, b d + \sqrt{-64 \, a b d^{2} + 16 \,{\left (a d + b d\right )}^{2}}}{b d}}}\right )}{a d{\left | -a d + b d \right |} + b d{\left | -a d + b d \right |} +{\left (a d - b d\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

-2*sqrt(a*b)*d*abs(b)*arctan(2*sqrt(1/2)*(e^(d*x + c) - e^(-d*x - c))/sqrt((4*a*d + 4*b*d - sqrt(-64*a*b*d^2 +
 16*(a*d + b*d)^2))/(b*d)))/((a*d - b*d)^2*b - (a*b + b^2)*d*abs(-a*d + b*d)) - 2*b*d*arctan(2*sqrt(1/2)*(e^(d
*x + c) - e^(-d*x - c))/sqrt((4*a*d + 4*b*d + sqrt(-64*a*b*d^2 + 16*(a*d + b*d)^2))/(b*d)))/(a*d*abs(-a*d + b*
d) + b*d*abs(-a*d + b*d) + (a*d - b*d)^2)